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INTRODUCTION

This monograph presents a rapid, inex-
pensive, and accurate method for determining
the increase in water pressure on dams, or
on vessels of any shape, due to horizontal
earthquakes and gives the magnitude of these
pressures for a number of cases. Although
earlier papers!* have shown that the in-
crease in water pressure on dams due to
earthquake is not excessively large, it is an
important factor in their design. It has been
recognized 2 that water pressures due to
earthquake diminish with decrease in the
upstream slope of a dam, but to the writer’s
knowledge data do not exist giving these
pressures as a function of slope. Mathe-
matical methods may be used to compute
these pressures, but they are complicated
and time-consuming.

If water is assumed to be incompress-
ible,? an electric analog may be used to de-
termine the magnitude and distribution of the
water pressure increases caused by a hori-
zontal earthquake on a dam of any profile.
Although this assumption is not conserva-
tive, a comparison with Westergaard’s *
analytical results for dams with vertical
upstream faces shows that for dams under
400 feet in height the error is exceedingly
small, and that it is not excessive for dams
as high as 800 feet.

The electric analog method consists of
constructing a tray geometrically similar
to the dam and reservoir area. A linearly
varying electric potential is placed along the
boundary representing the upstream fa.ce gf
the dam, and a constant electric potential is
placed along the boundary representing the
bottom of the reservoir. The tray is then
filled with an electrolyte and the streamlines
are surveyed by means of a modified Wheat-
stone bridge. The distribution and magni-
tude of pressures on the face of the dam are
obtained from the equipotential lines that
are constructed from the streamlines. The
procedure is explained later in detail.

The increase in water pressure, Pg,
caused by an earthquake is given by the
equation

As shown under Notation, w is the unit
weight of water, h the depth of the reser-
voir at the section being studied, and o
the horizontal earthquake intensity. C, the
unknown quantity, defines the magnitude and
distribution of pressures which are deter-
mined by the equipotential lines in the flow

*Superscripts refer to similarly numbered
references in bibliography.

net. C isa function of the shape of the dam
and reservoir and is unaffected by the in-
tensity of the quake. The designer need only
select a reasonable value for « and use the
proper C values given herein to determine
the water pressures on any dam due to a
horizontal earthquake. With the water pres-
sures known the stresses in the dam can be
computed by statical methods.

NOTATION
a = acceleration due to earthquake
C = coefficient giving the distribu-
tion and magnitude of pres-
sures (dimensionless)
Cm = maximum value of C for con-
stant slopes
E = bulk modulus of water
= acceleration due to gravity
= depth of reservoir at section
being studied
K = i,E = velocity of sound in
' water
Mg = moment of the pressure Pe
above y and about y
Pe = increase in water pressure at
point .y due to the horizontal
earthquake
T = period of the earthquake
vibration
t = time

Ve = total horizontal shear at y
due to Pg

W = unit weight of water
u,v,s = three orthogonal displacements
X,y,z = rectangular coordinates
= horizontal earthquake inten-
sity = %

Lo = displacement of ground

@ = potential
8]

= angle between a vertical and
the upstream face of dam



THEORY

When the compressibility of water is
considered in the hydrodynamic effect of a
horizontal earthquake, it is convenient to
assume that the earthquake manifests itself
in a harmonic motion. Analytic solutions
are also based upon the assumption that the
dam is a rigid wall that moves as a unit with
the foundation. The displacements are as-
sumed to be small and may be determined
from the equation

50:_%1‘2?_ cos [3%3:' ...... (2)

By assuming that the displacements of the
water body are small, the differential equa-
tions in rectangular coordinates expressing
the relationship of pressure (Pg), time (t),
and the three orthogonal displacements u,
v, and s are:

8Pe  w 9%u|
ox g ot2
Pe _wdv| ... . ... (3)
dy g at?
9Pe _ w 8%
a7z g ot2

With these assumptions for a compress-
ible fluid, the conditions of continuity are
given by the equation

du . v

j=
ov. ., 9s _ e ....... (4)
ax oy 0z a0

Using equations (3) and (4), the following
differential equation for the pressure in
three-dinmensional flow is obtzined

92P, 32D, 92Pe

(e 9% 1 0%
9x2  Ady2 9z2

- KZW”(E))

For two-dimensional flow the equation
becomes

32pe azpe 1 azpe
* = 22 .2
%2 dy2 K2 ot

Analytically the problem resolves itself
into determining solutions for the differential
equations (5) or (8) which also satisfy the
boundary conditions. The general conditions
to be met at any boundary may be written

FIGURE 1 - Displacement of fluid
relative to face of dam.

after consideration of Figure 1. For the
two-dimensional case, the displacements at
the face are:

O R e (7)

Vo= T et et et ettt et e (8)

The top indices refer to the movement of
the water relative to the darmri. The displace-
ment component perpendicular to any point
on the face of the dam must be zero since
the face is a streamline. Therefore, the
following equation may be written:

u+vtan® =€ ....... ... (9)

Now, if water is considered as incom-
pressible, E and hence K become infinite.
With K infinite the right sides of equations
(5) and (B8) become zero. For two-dimen-
sional flow (only two-dimensional flow is
considered hereafter) and an incompressible
fluid, equation (8) then becomes:

8%r, 52p,
Fo—_— =
Ix2 dy?

This is Laplace’s equation, which also
governs the steady state flow of electricity.
Therefore, the electric analogy tray appara-
tus may be used to obtain flow nets for
studying horizontal earthquake effects on
dams of various upstream shapes. The flow
net is an orthogonal system which consists
of two sets of curves, one representing
streamlines and the other equipotential lines.
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FIGURE 2 - Typical flow net.

Once the flow net is obtained, the proper
scale of the pressures in the net must be
determined. The pressure scale is easily
determined by the following considerations:

- a, Divide the reservoir depth h
into n equal parts

_ b. Assume the dam is rigid, then
the same quantity of water must flow
through each element

c. No water can flow across a
streamline at any point

d. Apply the equations of motion
and continuity to a square in the flow
net (see. Figure 2). Then

_ awh [AP 2mt
AP, = = [E cos_T_}. ... (11)

Equation (11) determines the scale of the
pressure, The equation can be further sim-
plified if the flow net is made into squares
so that A =As. Only the maximum pres-
sure increase is important, which occurs
when t=T. And so equation (11) becomes

The pressure coefficient C becomes the
1/n value which is determined directly from
the nominal value of the equipotential line
intersecting the face of the dam.

The pressure distribution and magnitude
are shown in the attached figures for several
upstream slopes of dams. The pressures
are given by the equation

P, =Cawh ............ (13)

which is equivalent to equation (12).

EARTHQUAKE INTENSITIES

In order to determine the total horizontal
force due to an earthquake, it is necessary
to know the acceleration of the quake or the
earthquake intensity. The use of earthquake
spectra4® derived from recorded accelero-
graphs is suggested for determining the in-
tensity. Biot’s* proposed standard spectrum
may be used if a damage scale is applied
Since it does not include damping. A joint
committee of the' ASCE and Structural En-
gineer’s Association of California® has ap-
plied a damage factor to Biot’s proposed
spectrum and has suggested that the maxi-
mum value of « be 0.10 and the minimum
value 0.03 for other than frame structures.
The Bureau of Reclamation has consistently
used a horizontal intensity, oc, 0.10 on
dams, along with a vertical intensity of about
equal or smaller magnitude. Kosi Dam and
Bhakra Dam in India, however, were ana-
lyzed for a horizontal earthquake intensity

of 0.15.

Resonance in dams is not apt to occur
for several reasons. The fundamental
period of vibration of the usual concrete or
earth gravity dam will be from 0.08 to
about 1.00 second 178 while the maximum
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FIGURE 3 - Electric analogy tray model.

energy of the earthquake appears in most
spectra456 at a period of approximately
0.2 second. Resonance with the foundation
is not apt to occur since studies of the fun-
damental ground periods® show values of
0.03 to 0.05 seconds. Although earthquakes
are experimentally and analytically treated
as harmonic, recorded ground motions do
not appear to be harmonic in the destructive
zone of the quake, and a steady state re-
sponse of the structures is usually not es-
tablished. Also, many forms of damping
that are difficult to evaluate act to prevent
resonance.

At the present time, the choice of earth-
quake intensity to apply to a structure must
be based upon experience in conjunction with
available seismic records. Earthquake
spectra including the effects of damping

need to be determined for structures having:

a wide range of fundamental periods. The
spectra should be obtained by subjecting the
structure with damping to actual recorded
accelerograms of destructive earthquakes
such as the Helena, Montana quake of 1935,
the Ferndale, California quake of 1938, and
the E1 Centro, California quake of 1940.

ELECTRIC ANALOG PROCEDURE

The electric analogy tray experiments
(see Figure 3) were conducted by first con-
structing a tank of sheet plastic 2 inches
deep, 32 inches long, and 4 inches wide. The
plastic boundary at one end of the tank was
shaped to represent the upstream face of
the dam being studied (see Figure 4), while
the plastic boundary at the opposite end of
the tank is merely installed in a plane. Any
shape for this latter boundary could be used
if it is placed upstream a distance greater
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FIGURE U4 - Diagrammatic layout of electric analogy tray.



than three times the height of the dam. In
these experiments the distance was made 8h.

Since the theory assumes that the dam
moves as 2 rigid body into (or away from)
the reservoir water, the quantity of water
displaced for any elemental height of dam
will be equal to that quantity displaced at
any other element of height. This boundary
condition can be met in the analogy by es-
tablishing a linearly varying potential along
the plastic boundary representing the up-
stream face of the dam. Nichrome wire was
wound around this boundary to bring about
the linear drop in potential. All streamlines
at the face of the dam (see Figure 2) will
then have the same vertical spacing h/n.
Since the bottom of the reservoir is a
streamline, a constant potential electrode
represented by a copper strip is placed along
this boundary. Naturally the potential at the
base of the dam must be the same as the
potential along the reservoir bottom. Note
that in this analogy the electric potentials
represent the streamlines of the prototyped
problem.

Proper boundary potentials having been
established, the tray is filled with an elec-
trolyte. Experience has shown that ordinary
tap water is a satisfactory electrolyte. The
model or tray is connected to a modified
Wheatstone bridge and to the power supply
as shown in Figure 4. The bridge is set to

read a constant potential, say 10 percent,
and several points in the tray at this poten-
tial are determined, plotted on coordinate
paper, and connected by a smooth curve.
This process is repeated for bridge settings
at 10 percent intervals from 20 through 90
percent. The plot of the electric potential
gives the streamline spacing in the proto-
type. The potentials in the prototype are
now drawn perpendicular to the streamlines
forming a system of squares as illustrated
in the example of Figure 2. The zero poten-
tial is the water surface. Proceeding into
the fluid along a streamline, the potential
lines in the square net become in succession
the 10 percent, 20 percent, 30 percent, etc.
A potential line gives the value of the pres-
sure coefficient, C. Therefore, the pres-
sure coefficient at the face of the dam is the
value of the potential line at its intersection
with the face of the dam.

APPLICATION OF DATA

In order to make this study of general
value to designers, pressures due to earth-
quake were determined for several shapes
of dams. Dams studied were those with
constant upstream slopes 6 of 0, 15, 30,
45, 60, and 75 degrees. The pressure at the
base of the dam and the maximum pressure
on the slope are shown in Figure 5. The
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FIGURE 5 - Pressure coefficients for constant sloping faces.
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pressure coefficient, C, varies almost
linearly from 0.735 for a dam with vertical
face, 6 = 0 degrees, to 0.165 for 6 = 75
degrees. The distribution of pressure for
these constant slopes is shown in Figure 6.
To permit rapid use of these data by design-
ers, the experimentally determined pres-
sure curves of Figure 6 are represented by
a family of parabolas which closely approxi-
mate the experimental curves for constant
slopes. The parabolic distribution is given
by the equation

Cpy Ly
c =2 [X(z L)
+ %(2_%)J ......... (14)

where Cp, is the maximui value of C oh-

tained from Figure . So, for dams with
constant upstream slopes the increase in
pressure due to horizontal earthquake
becomes .

The total horizontal force V. above any
elevation y and the total overturning

moment M, above y due to Py may ana-
lytically be shown to be

Ve = 0726 Pgy . o o o o oo o L. (18) -
and
2
Mg = 0.299 Pey™. oo a7

If one desires, he may use the experi-
mentally determined results of Figure 8 in
preference to the approximations of equa-
tions (15), (18), and (17).

Figure 2 is a typical flow net system.
The percent value of the equipotential lines
gives the magnitude of the pressure coeffi-
cient C. Figures 7 through 14 show the
magnitude and distribution of pressures for
certain combinations of vertical with sloping
faces of dams.

The slight errors resulting from the
assumption of incompressibility of water
can be shown by comparing the experimental
values for pressure on a vertical face with
Westergaard’s exact analytical solution.
Westergaard’s data are computed for a
period T of 4/3 seconds. Table 1 shows
percent errors for several heights of dams.
Minus signs preceding the percentages
indicate values less than those given by
Westergaard.

6 Interior - Reclamation - Denver, Colo.



Table 1

PERCENTAGE ERRORS INTRODUCED
BY ASSUMPTION THAT WATER
IS INCOMPRESSIBLE

Height of Dam

Quantity | 100' | 200" | 400" |.600~ | 800"

Pe -0.9| -1.9( -5.2| -9.1 | -15.7
Ve -1.7| -2.4| -4.9| -88 | -14.8
Mg +1.1] +0.2| -2.1| -5.8 |-11.5

These errors are small and are usually
negligible compared to the total water force
applied to the dam.
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FIGURE 11 - Values of C for combination slopes in which the inclusive
angle is 75°, and vertical portion of upstream face is variable.
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FIGURE 12 - Values of C for variable slopes with vertical portion
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FIGURE 13 - Values of C for variable slopes with vertical portion
always
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PIGURE 14 - Values of C for variable slo
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